
www.khronos.org/webgl©2011 Khronos Group - Rev. 0211

OpenGL ES Shading Language 1.0 Quick Reference Card - Page 3

Operators and Expressions
Operators [5.1] Numbered in order of precedence. The
relational and equality operators > < <= >= == != evaluate to a
Boolean. To compare vectors component-wise, use functions such as
lessThan(), equal(), etc.

Operator Description Associativity

1. () parenthetical grouping N/A

2.
[]
()
 .

++ --

array subscript
function call & constructor structure
field or method selector, swizzler
postfix increment and decrement

L - R

3. ++ --
+ - !

prefix increment and decrement
unary R - L

4. * / multiplicative L - R
5. + - additive L - R
7. < > <= >= relational L - R
8. == != equality L - R

12. && logical and L - R

13. ^^ logical exclusive or L - R

14. | | logical inclusive or L - R

15. ? :
selection (Selects one entire operand.
Use mix() to select individual components
of vectors.)

L - R

16.
=

+= -=
*= /=

assignment
arithmetic assignments L - R

17. , sequence L - R

Vector Components [5.5]
In addition to array numeric subscript syntax, names of vector
components are denoted by a single letter. Components can be
swizzled and replicated, e.g.: pos.xx, pos.zy

{x, y, z, w} Use when accessing vectors that represent points or
normals

{r, g, b, a} Use when accessing vectors that represent colors
{s, t, p, q} Use when accessing vectors that represent texture

coordinates

Preprocessor [3.4]
Preprocessor Directives
The number sign (#) can be immediately preceded or followed in its line by spaces or horizontal tabs.

#	 #define	 #undef	 #if	 #ifdef	 #ifndef	 #else
#elif	 #endif	 #error	 #pragma	 #extension	 #version	 #line

Examples of Preprocessor Directives
•	 “#version 100” in a shader program specifies that the program is written in GLSL ES version 1.00. It is optional. If used, it must occur before

anything else in the program other than whitespace or comments.
•	 #extension extension_name : behavior, where behavior can be require, enable, warn, or disable; and where extension_name is the

extension supported by the compiler

Predefined Macros

__LINE__ Decimal integer constant that is one more than the number of preceding new-lines in the current
source string

__VERSION__ Decimal integer, e.g.: 100

GL_ES Defined and set to integer 1 if running on an OpenGL-ES Shading Language.

GL_FRAGMENT_PRECISION_HIGH 1 if highp is supported in the fragment language, else undefined [4.5.4]

The OpenGL® ES Shading Language is two closely-
related languages which are used to create shaders for
the vertex and fragment processors contained in the
OpenGL ES processing pipeline.

[n.n.n] refers to sections in the OpenGL ES
Shading Language 1.0 specification at
www.khronos.org/registry/gles

Qualifiers
Storage Qualifiers [4.3]
Variable declarations may be preceded by one storage
qualifier.
none (Default) local read/write memory, or input parameter

const Compile-time constant, or read-only function
parameter

attribute Linkage between a vertex shader and OpenGL ES for
per-vertex data

uniform Value does not change across the primitive being
processed, uniforms form the linkage between a
shader, OpenGL ES, and the application

varying Linkage between a vertex shader and fragment shader
for interpolated data

Uniform [4.3.4]
Use to declare global variables whose values are the same
across the entire primitive being processed. All uniform
variables are read-only. Use uniform qualifiers with any basic
data types, to declare a variable whose type is a structure, or
an array of any of these. For example:
 uniform vec4 lightPosition;

Varying [4.3.5]
The varying qualifier can be used only with the data types
float, vec2, vec3, vec4, mat2, mat3, mat4, or arrays of these.
Structures cannot be varying. Varying variables are required
to have global scope. Declaration is as follows:
 varying vec3 normal;

Parameter Qualifiers [4.4]
Input values are copied in at function call time, output values
are copied out at function return time.
none (Default) same as in
in For function parameters passed into a function
out For function parameters passed back out of a function, but

not initialized for use when passed in
inout For function parameters passed both into and out of a

function

Precision and Precision Qualifiers [4.5]
Any floating point, integer, or sampler declaration can have the
type preceded by one of these precision qualifiers:
highp Satisfies minimum requirements for the vertex language.

Optional in the fragment language.
mediump Satisfies minimum requirements for the fragment

language. Its range and precision is between that
provided by lowp and highp.

lowp Range and precision can be less than mediump, but still
represents all color values for any color channel.

For example:
 lowp float color;
 varying mediump vec2 Coord;
 lowp ivec2 foo(lowp mat3);
 highp mat4 m;

Ranges & precisions for precision qualifiers (FP=floating point):

FP Range
FP Magnitude

Range FP Precision
Integer
Range

highp (−262 , 262) (2–62 , 262) Relative 2–16 (−216 , 216)

mediump (−214 , 214) (2–14 , 214) Relative 2–10 (−210 , 210)

lowp (−2, 2) (2–8 , 2) Absolute 2–8 (−28 , 28)

A precision statement establishes a default precision qualifier
for subsequent int, float, and sampler declarations, e.g.:
 precision highp int;

Invariant Qualifiers Examples [4.6]
#pragma STDGL invariant(all) Force all output variables to be

invariant
invariant gl_Position; Qualify a previously declared

variable
invariant varying mediump
 vec3 Color;

Qualify as part of a variable
declaration

Order of Qualification [4.7]
When multiple qualifications are present, they must follow a
strict order. This order is as follows.
 invariant, storage, precision
 storage, parameter, precision

Types [4.1]
A shader can aggregate these using arrays and structures to build
more complex types. There are no pointer types.

Basic Types
void no function return value or empty parameter list

bool Boolean

int signed integer

float floating scalar

vec2, vec3, vec4 n-component floating point vector

bvec2, bvec3, bvec4 Boolean vector

ivec2, ivec3, ivec4 signed integer vector

mat2, mat3, mat4 2x2, 3x3, 4x4 float matrix

sampler2D access a 2D texture

samplerCube access cube mapped texture

Structures and Arrays [4.1.8, 4.1.9]
Structures struct type-name {

 members
} struct-name[];	 // optional variable declaration,
	 // optionally an array

Arrays float foo[3];
 * structures and blocks can be arrays
 * only 1-dimensional arrays supported
 * structure members can be arrays

Aggregate Operations and Constructors
Matrix Constructor Examples [5.4]
mat2(float)	 // init diagonal
mat2(vec2, vec2); 	 // column-major order
mat2(float, float, float, float); 	 // column-major order

Structure Constructor Example [5.4.3]
	 struct light {float intensity; vec3 pos; };
	 light lightVar = light(3.0, vec3(1.0, 2.0, 3.0));

Matrix Components [5.6]
Access components of a matrix with array subscripting syntax.
For example:

mat4 m;	 // m represents a matrix
m[1] = vec4(2.0);	 // sets second column to all 2.0
m[0][0] = 1.0; 	 // sets upper left element to 1.0
m[2][3] = 2.0; 	 // sets 4th element of 3rd column to 2.0

Examples of operations on matrices and vectors:
m = f * m;	 // scalar * matrix component-wise
v = f * v;	 // scalar * vector component-wise
v = v * v;	 // vector * vector component-wise

m = m +/- m;	 // matrix component-wise addition/subtraction
m = m * m;	 // linear algebraic multiply
m = v * m; 	// row vector * matrix linear algebraic multiply
m = m * v; 	 // matrix * column vector linear algebraic multiply
f = dot(v, v); 	 // vector dot product
v = cross(v, v); 	 // vector cross product
m = matrixCompMult(m, m); // component-wise multiply

Structure Operations [5.7]
Select structure fields using the period (.) operator. Other
operators include:

. field selector
== != equality

= assignment

Array Operations [4.1.9]
Array elements are accessed using the array subscript
operator “[]”. For example:

	 diffuseColor += lightIntensity[3] * NdotL;

