
www.khronos.org/registry/gles/©2017 Khronos Group - Rev. 0217

OpenGL ES Shading Language 3.0 API Quick Reference Guide Page 6

Preprocessor [3.4]
Preprocessor Directives
The number sign (#) can be immediately preceded or followed in its line by spaces or horizontal tabs.

#define #undef #if #ifdef #ifndef #else
#elif #endif #error #pragma #extension #line

Examples of Preprocessor Directives
• “#version 300 es” must appear in the first line of a shader program written in GLSL ES version 3.00. If omitted, the shader will be treated

as targeting version 1.00.
• #extension extension_name : behavior, where behavior can be require, enable, warn, or disable; and where extension_name is the

extension supported by the compiler
• #pragma optimize({on, off}) - enable or disable shader optimization (default on)

#pragma debug({on, off}) - enable or disable compiling shaders with debug information (default off)

Predefined Macros
__LINE__ Decimal integer constant that is one more than the number of preceding newlines in the current source string

__FILE__ Decimal integer constant that says which source string number is currently being processed.

__VERSION__ Decimal integer, e.g.: 300

GL_ES Defined and set to integer 1 if running on an OpenGL-ES Shading Language.

The OpenGL® ES Shading Language is two closely-
related languages which are used to create shaders for
the vertex and fragment processors contained in the
WebGL, OpenGL, and OpenGL ES processing pipelines.
WebGL 2.0 is based on OpenGL ES 3.0.

[n.n.n] and [Table n.n] refer to sections and tables
in the OpenGL ES Shading Language 3.0 specification at
www.khronos.org/registry/gles/

Types [4.1]
A shader can aggregate these using arrays and structures to build
more complex types. There are no pointer types.

Basic Types
void no function return value or empty parameter list

bool Boolean

int, uint signed, unsigned integer

float floating scalar

vec2, vec3, vec4 n-component floating point vector

bvec2, bvec3, bvec4 Boolean vector

ivec2, ivec3, ivec4 signed integer vector

uvec2, uvec3, uvec4 unsigned integer vector

mat2, mat3, mat4 2x2, 3x3, 4x4 float matrix

mat2x2, mat2x3, mat2x4 2x2, 2x3, 2x4 float matrix

mat3x2, mat3x3, mat3x4 3x2, 3x3, 3x4 float matrix

mat4x2, mat4x3, mat4x4 4x2, 4x3, 4x4 float matrix

Floating Point Sampler Types (opaque)
sampler2D, sampler3D access a 2D or 3D texture

samplerCube access cube mapped texture

samplerCubeShadow access cube map depth texture with comparison

sampler2DShadow access 2D depth texture with comparison

sampler2DArray access 2D array texture

sampler2DArrayShadow access 2D array depth texture with comparison

Signed Integer Sampler Types (opaque)
isampler2D, isampler3D access an integer 2D or 3D texture

isamplerCube access integer cube mapped texture

isampler2DArray access integer 2D array texture

Unsigned Integer Sampler Types (opaque)
usampler2D, usampler3D access unsigned integer 2D or 3D texture

usamplerCube access unsigned integer cube mapped texture

usampler2DArray access unsigned integer 2D array texture

Structures and Arrays [4.1.8, 4.1.9]
Structures struct type-name {

 members
} struct-name[]; // optional variable declaration,
 // optionally an array

Arrays float foo[3];
 Structures, blocks, and structure members can be arrays.
 Only 1-dimensional arrays supported.

Operators and Expressions
Operators [5.1] Numbered in order of precedence. The
relational and equality operators > < <= >= == != evaluate to a
Boolean. To compare vectors component-wise, use functions
such as lessThan(), equal(), etc. [8.7].

Operator Description Assoc.

1. () parenthetical grouping N/A

2.

[]
()
 .

++ --

array subscript
function call & constructor structure
field or method selector, swizzler
postfix increment and decrement

L - R

3. ++ --
+ - ~ !

prefix increment and decrement
unary R - L

4. * % / multiplicative L - R
5. + - additive L - R
6. << >> bit-wise shift L - R

7. < > <= >= relational L - R
8. == != equality L - R
9. & bit-wise and L - R

10. ^ bit-wise exclusive or L - R
11. | bit-wise inclusive or L - R
12. && logical and L - R
13. ^^ logical exclusive or L - R
14. | | logical inclusive or L - R

15. ? :
selection (Selects an entire operand.
Use mix() to select individual
components of vectors.)

L - R

16.

= assignment L - R
+= -= *= /=
%= <<= >>=

&= ^= |=
arithmetic assignments L - R

17. , sequence L - R

Vector Components [5.5]
In addition to array numeric subscript syntax, names of vector
components are denoted by a single letter. Components can be
swizzled and replicated, e.g.: pos.xx, pos.zy

{x, y, z, w} Use when accessing vectors that represent points or normals

{r, g, b, a} Use when accessing vectors that represent colors

{s, t, p, q} Use when accessing vectors that represent texture coordinates

Qualifiers
Storage Qualifiers [4.3]
Variable declarations may be preceded by one storage
qualifier.
none (Default) local read/write memory, or input parameter

const Compile-time constant, or read-only function
parameter

in
centroid in Linkage into a shader from a previous stage

out
centroid out Linkage out of a shader to a subsequent stage

uniform
Value does not change across the primitive being
processed, uniforms form the linkage between a
shader, OpenGL ES, and the application

The following interpolation qualifiers for shader outputs
and inputs may procede in, centroid in, out, or
centroid out.
smooth Perspective correct interpolation

flat No interpolation

Interface Blocks [4.3.7]
Uniform variable declarations can be grouped into named
interface blocks, for example:

uniform Transform {
 mat4 ModelViewProjectionMatrix;
 uniform mat3 NormalMatrix; // restatement of qualifier
 float Deformation;
}

Layout Qualifiers [4.3.8]
layout(layout-qualifier) block-declaration
layout(layout-qualifier) in/out/uniform
layout(layout-qualifier) in/out/uniform

 declaration

Input Layout Qualifiers [4.3.8.1]
For all shader stages:

location = integer-constant

Output Layout Qualifiers [4.3.8.2]
For all shader stages:

location = integer-constant

Uniform Block Layout Qualifiers [4.3.8.3]
Layout qualifier identifiers for uniform blocks:

shared, packed, std140, {row, column}_major

Parameter Qualifiers [4.4]
Input values are copied in at function call time, output values are
copied out at function return time.

none (Default) same as in

in For function parameters passed into a function

out For function parameters passed back out of a function, but
not initialized for use when passed in

inout For function parameters passed both into and out of a function

Precision and Precision Qualifiers [4.5]
Any floating point, integer, or sampler declaration can have the
type preceded by one of these precision qualifiers:

highp Satisfies minimum requirements for the vertex language.

mediump Range and precision is between that provided by lowp
and highp.

lowp Range and precision can be less than mediump, but still
represents all color values for any color channel.

Ranges and precisions for precision qualifiers (FP=floating point):

FP Range
FP Magnitude

Range FP Precision

Integer Range

Signed Unsigned

highp (−2126 , 2127) 0.0, (2–126 , 2127) Relative 2–24 [−231, 231 −1] [0, 232 −1]

mediump (−214 , 214) (2–14 , 214) Relative 2–10 [−215, 215 −1] [0, 216 −1]

lowp (−2, 2) (2–8 , 2) Absolute 2–8 [−27, 27 −1] [0, 28 −1]

A precision statement establishes a default precision qualifier for
subsequent int, float, and sampler declarations, e.g.:
 precision highp int;

Invariant Qualifiers Examples [4.6]

#pragma STDGL invariant(all) Force all output variables to be invariant

invariant gl_Position; Qualify a previously declared variable

invariant centroid out
 vec3 Color; Qualify as part of a variable declaration

Order of Qualification [4.7]
When multiple qualifications are present, they must follow a
strict order. This order is either:
 invariant, interpolation, storage, precision
or:
 storage, parameter, precision

